Correction de SUITES - Fiche 2

Navigation vers les corrections : 1

2 3 4

5 6 \bigcirc 8

9

Version plus rapide et autorisée : $\lim 3n = +\infty$

10

11 12 13

 $\lim_{n \to +\infty} \left(-\frac{2}{n} \right) = 0 \quad \text{donc, par somme, } \lim_{n \to +\infty} \left(3n - \frac{2}{n} \right) = +\infty.$

14)

(15)

(1) Deux riveaux de présentation sont proposés.

> Le premier riveau à gauche est très détaillé pour les débutants et permet de bien comprendre. Les versions rapides à droite sont autorisées pour ceux qui ont bien compris, et surtout dans les exercices plus complexes.

donc, par somme, $\lim_{n \to +\infty} (3n - \frac{2}{n}) = +\infty$

 $\lim n^2 = +\infty \text{ donc } \lim -3n^2 = -\infty$ b.

donc, par somme, $\lim (1-3n^2) = -\infty$.

 \rightarrow Là aussi, on acceptera directement : $\lim \ (1-3n^2)=-\infty$.

 $\lim (1+n) = +\infty$

donc, par inverse, $\lim_{n \to +\infty} \frac{1}{1+n} = 0$.

 $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \text{ donc par produit } \lim_{n \to +\infty} \left(-\frac{3}{\sqrt{n}} \right) = 0$

donc, par somme, $\lim_{n \to +\infty} \left(-10 + n - \frac{3}{\sqrt{n}} \right) = +\infty$.

 $\lim n^2 = +\infty$ $\lim (n+3) = +\infty$

donc, par somme, $\lim_{n \to +\infty} (n^2 + n + 3) = +\infty$

donc, par inverse, $\lim_{n \to +\infty} \frac{1}{n^2 + n + 3} = 0$

donc, par produit, $\lim_{n \to +\infty} \frac{-2}{n^2 + n + 3} = 0$.

Version plus rapide et autorisée

$$\begin{cases} \lim_{n \to +\infty} (-10 + n) = +\infty \\ \lim_{n \to +\infty} (-\frac{3}{\sqrt{n}}) = 0 \end{cases}$$
 donc, I

donc, par somme, $\lim_{n \to +\infty} (-10 + n - \frac{3}{\sqrt{n}}) = +\infty$.

Vous pouvez répondre à la fin simplement : ... donc, par somme, $\lim u_n = +\infty$.

Version plus rapide et autorisée :

Ottention, vous ne pourriez pas aller aussi vite pour $\lim (n^2 - n + 3) = +\infty$

BROUILLON: On repère d'abord la forme indéterminée en analysant le quotient: n+12.

 $\frac{(+\infty)}{(+\infty)}$ est bien un **quotient indéterminé** car un nombre très grand divisé par un nombre très grand peut être très grand, très petit ou ni l'un ni l'autre...

On doit donc commencer par une transformation de l'expression

 $\frac{n}{n+1} = \frac{n}{n(1+\frac{1}{n})} = \frac{1}{1+\frac{1}{n}}$

ightarrow Te factorise et simplifie par n , le responsable de ma forme indéterminée.

 $\lim_{n \to +\infty} \frac{1}{n} = 0$

donc, par somme, $\lim_{n \to +\infty} (1 + \frac{1}{n}) = 1$ et par inverse, $\lim_{n \to +\infty} \frac{1}{1 + \frac{1}{n}} = 1$.

 \rightarrow On peut écrire directement $\lim_{n \to +\infty} (1 + \frac{1}{n}) = 1$ sans le justifier.

 \rightarrow Ni très grand, ni très petit... Queun infini ne l'a emporté.

On peut appliquer la même factorisation qu'au a., cela fonctionne très bien.

Mais regardez comme on peut aller très vite:

 $\frac{n+1}{n} = \frac{n}{n} + \frac{1}{n} = 1 + \frac{1}{n}$

ightarrow Te transforme mon expression.

 $\lim_{n \to +\infty} \frac{1}{n} = 0$

donc, par somme, $\lim_{n \to +\infty} (1 + \frac{1}{n}) = 1$.

 \rightarrow Ni très grand, ni très petit...

Ottention, impossible de faire pareil avec l'exemple du ${f a}$.

<u>BROUILLON</u>: On repère d'abord le quotient indéterminé $\frac{(+\infty)}{(+\infty)}$

$$\frac{n}{n+1} = \frac{n \times n}{n \times (1 + \frac{1}{n})} = \frac{n}{1 + \frac{1}{n}}$$

$$\lim_{n \to +\infty} n = +\infty$$

 $\frac{1^{\frac{2n}{n}} \text{ méthode}}{n+1} : \text{ la factorisation faible par } n$ $\frac{n^2}{n+1} = \frac{n \times n}{n \times (1+\frac{1}{n})} = \frac{n}{1+\frac{1}{n}} \longrightarrow \frac{\text{BROULLON}}{1+\frac{1}{n}} : \frac{n}{1+\frac{1}{n}} \longrightarrow \frac{n}{1+\frac{1}{$

$$\begin{cases} \lim_{n \to +\infty} n = +\infty \\ \left(\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ donc}\right) \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) = 1 \end{cases}$$

$$\frac{n^2}{n+1} = \frac{n^2}{n^2 \left(\frac{1}{n} + \frac{1}{n^2}\right)} = \frac{1}{\frac{1}{n} + \frac{1}{n^2}}$$

 $\frac{2^{\text{ène}} \text{ méthode}}{n+1} : \text{la factorisation forte par } n^2$ $\frac{n^2}{n+1} = \frac{\cancel{n^2}}{\cancel{n^2}(\frac{1}{n} + \frac{1}{n^2})} = \frac{1}{\frac{1}{n} + \frac{1}{n^2}}$ $\rightarrow \frac{\text{BROUILLON}}{0} : \frac{1}{\frac{1}{n} + \frac{1}{n^2}} 0$ Le quotient $\frac{1}{(0)}$ n'est plus indéterminé, mais...

$$\begin{cases} \lim_{n \to +\infty} \frac{1}{n} = 0\\ \lim_{n \to +\infty} \frac{1}{n^2} = 0\\ \text{donc, par somme, } \lim_{n \to +\infty} \left(\frac{1}{n} + \frac{1}{n^2}\right) = 0 \end{cases}$$

... attention à $\frac{1}{(0)}$, l'inverse d'un très petit peut aller vers $+\infty$ ou $-\infty$, tout dépend de son signe...

De plus, $\frac{1}{n} + \frac{1}{n^2}$ est toujours positif,

ightarrow ightarrow m Il faut donc penser à étudier le signe (ici très facile).

donc, par inverse, $\lim_{n \to +\infty} \frac{1}{\frac{1}{n} + \frac{1}{n^2}} = +\infty$.

BROUILLON: C'est toujours un quotient indéterminé $\frac{(+\infty)}{(+\infty)}$

$$\frac{1^{\frac{\mathtt{dre}}{n}} \, \underline{\mathsf{méthode}}}{\frac{n+1}{n^2-1}} = \frac{n\,(\,1+\frac{1}{n}\,)}{n\,(\,n-\frac{1}{n}\,)} = \frac{1+\frac{1}{n}}{n-\frac{1}{n}}$$

$$\rightarrow \frac{\text{BROUILLON}}{+\infty} : \frac{1 + \frac{1}{n} - 0}{1 + \frac{1}{n} - 0} \text{ Le quotient } \frac{(1)}{(+\infty)} \text{ n'est plus indéterminé.}$$

$$\begin{cases} \lim_{n \to +\infty} (1 + \frac{1}{n}) = 1 \\ \lim_{n \to +\infty} (n - \frac{1}{n}) = +\infty \end{cases}$$

donc, par quotient, $\lim_{n \to +\infty} \frac{1 + \frac{1}{n}}{n - \frac{1}{n}} = 0$.

$$\frac{n+1}{n^2-1} = \frac{n^2(\frac{1}{n} + \frac{1}{n^2})}{n^2(1 - \frac{1}{n^2})} = \frac{\frac{1}{n} + \frac{1}{n^2}}{1 - \frac{1}{n^2}}$$

$$\begin{cases} \lim_{n \to +\infty} \left(\frac{1}{n} + \frac{1}{n^2}\right) = 0\\ \lim_{n \to +\infty} 1 - \frac{1}{n^2} = 1 \end{cases}$$

donc, par quotient, $\lim_{n \to +\infty} \frac{\frac{1}{n} + \frac{1}{n^2}}{1 - \frac{1}{n^2}} = 0$.

 $\underline{\mathtt{3}^{\mathtt{ine}}}$ <u>méthode</u> : factorisation non équilibrée, par n en haut et par n^2 en bas

$$\frac{n+1}{n^2-1} = \frac{n(1+\frac{1}{n})}{n^2(1-\frac{1}{n^2})} = \frac{1+\frac{1}{n}}{n(1-\frac{1}{n^2})}$$

ightarrow ightarrow Je simplifie par un seul $\,n$, attention, il en reste un en bas.

D'une part,
$$\lim_{n \to +\infty} (1 + \frac{1}{n}) = 1$$
.
$$\lim_{n \to +\infty} n = +\infty$$
 D'autre part,
$$\begin{cases} \lim_{n \to +\infty} n = +\infty \\ \lim_{n \to +\infty} (1 - \frac{1}{n^2}) = 1 \end{cases}$$
 donc par produit, $\lim_{n \to +\infty} n (1 - \frac{1}{n^2}) = +\infty$

donc, par quotient,
$$\lim_{n \to +\infty} \frac{1 + \frac{1}{n}}{n \left(1 - \frac{1}{n^2}\right)} = 0.$$

e.
$$\frac{(n+1)^2}{n} = \frac{n^2 + 2n + 1}{n} = \frac{n^2}{n} + \frac{2n}{n} + \frac{1}{n} = n + 2 + \frac{1}{n}$$

$$\begin{cases} \lim_{n \to +\infty} n = +\infty \\ \lim_{n \to +\infty} \frac{1}{n} = 0 \end{cases}$$
 donc, par somme, $\lim_{n \to +\infty} (n+2+\frac{1}{n}) = +\infty$.

$$\mathbf{f.} \qquad \frac{(n+1)^2}{2n^2+1} = \frac{n^2+2n+1}{2n^2+1} = \frac{p^2(1+\frac{2}{n}+\frac{1}{n^2})}{p^2(2+\frac{1}{n^2})} = \frac{1+\frac{2}{n}+\frac{1}{n^2}}{2+\frac{1}{n^2}}$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ et } \lim_{n \to +\infty} \frac{1}{n^2} = 0$$

donc, par somme
$$\begin{cases} \lim_{n \to +\infty} (1 + \frac{2}{n} + \frac{1}{n^2}) = 1\\ \lim_{n \to +\infty} (2 + \frac{1}{n^2}) = 2 \end{cases}$$

et donc, par quotient,
$$\lim_{n \to +\infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{2 + \frac{1}{n^2}} = \frac{1}{2}.$$

g. BROULLON:
$$\sqrt{n+1}-\sqrt{n}$$
 C'est une somme indéterminée $(+\infty)-(+\infty)$

La présence d'une somme de racines carrées doit vous faire réagir... Pensez à la quantité conjuguée

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{(\sqrt{n+1})^2 - (\sqrt{n})^2}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \rightarrow C$$
 est beau.

$$\lim_{n \to +\infty} \sqrt{n+1} = +\infty \text{ et } \lim_{n \to +\infty} \sqrt{n} = +\infty$$

donc, par somme,
$$(\sqrt{n+1} + \sqrt{n}) = +\infty$$
 \rightarrow Et là on est sawé car ce n'est plus une différence, c'est une somme!

donc, par inverse,
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

3. **a.**
$$\lim_{n \to +\infty} (1 + \sqrt{n}) = +\infty$$

donc, par inverse, $\lim_{n \to +\infty} \frac{1}{1 + \sqrt{n}} = 0$.

b. Forme indéterminée
$$\frac{(-\infty)}{(+\infty)}$$
, utilisons la factorisation non équilibrée (la factorisation forte par n^2 pose un problème pour étudier le signe...):

$$\frac{-2n^2+3}{5-n} = \frac{n^2\left(-2+\frac{3}{n^2}\right)}{n\left(\frac{5}{n}-1\right)} = \frac{n\left(-2+\frac{3}{n^2}\right)}{\frac{5}{n}-1}$$

donc, par quotient,
$$\lim_{n \to +\infty} \frac{n \left(-2 + \frac{3}{n^2}\right)}{\frac{5}{n} - 1} = +\infty.$$

c.
$$\begin{cases} \lim_{n \to +\infty} (3n^2 - 1) = +\infty \\ \lim_{n \to +\infty} (-\frac{1}{\sqrt{n}}) = 0 \end{cases}$$

donc, par somme,
$$\lim_{n \to +\infty} (3n^2 - 1 - \frac{1}{\sqrt{n}}) = +\infty$$
.

d. Forme indéterminée
$$(+\infty) - (+\infty)$$
.

Forme indéterminée
$$(+\infty)-(+\infty)$$
.
$$\sqrt{n}-\sqrt{n-1}=\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n}+\sqrt{n-1}}=\frac{n-n+1}{\sqrt{n}+\sqrt{n-1}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}$$

$$\lim_{n\to\infty}(\sqrt{n}+\sqrt{n-1})=+\infty$$

$$\lim_{n \to +\infty} \left(\sqrt{n} + \sqrt{n-1} \right) = +\infty$$

donc, par inverse,
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n} + \sqrt{n-1}} = 0$$
.

$$\frac{-2n^2+3}{5-n} = \frac{n(-2n+\frac{3}{n})}{n(\frac{5}{n}-1)} = \frac{-2n+\frac{3}{n}}{\frac{5}{n}-1}$$

e.
$$\lim_{n \to +\infty} (n^2 - 1) = +\infty$$
donc, par inverse,
$$\lim_{n \to +\infty} \frac{1}{n^2 - 1} = 0$$

f.
$$\begin{cases} \lim_{n \to +\infty} (-9n) = -\infty \\ \lim_{n \to +\infty} (-\frac{4}{n}) = 0 \\ \text{donc, par somme, } \lim_{n \to +\infty} (-9n - \frac{4}{n}) = -\infty \end{cases}$$

g. Forme indéterminée
$$\frac{(+\infty)}{(+\infty)}$$
: $\frac{2n^2-1}{4n^2+1} = \frac{n^2(2-\frac{1}{n^2})}{n^2(4+\frac{1}{n^2})} = \frac{2-\frac{1}{n^2}}{4+\frac{1}{n^2}}$

$$\begin{cases} \lim_{n \to +\infty} \left(2 - \frac{1}{n^2} \right) = 2 \\ \lim_{n \to +\infty} \left(4 + \frac{1}{n^2} \right) = 4 \end{cases}$$

donc, par somme,
$$\lim_{n \to +\infty} \frac{2 - \frac{1}{n^2}}{4 + \frac{1}{n^2}} = \frac{2}{4} = \frac{1}{2}$$
.

h.
$$\lim_{n \to +\infty} (-\sqrt{n}) = -\infty$$
donc, par somme,
$$\lim_{n \to +\infty} (1 - \sqrt{n}) = -\infty$$

i. Le
$$2^{\text{ine}}$$
 terme est une forme indéterminée $\frac{(+\infty)}{(+\infty)}$: $\frac{n+1}{n^2-2} = \frac{n\left(1+\frac{1}{n}\right)}{n^2\left(1-\frac{2}{n^2}\right)} = \frac{1+\frac{1}{n}}{n\left(1-\frac{2}{n^2}\right)}$

$$\begin{cases} \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) = 1 \\ \lim_{n \to +\infty} n = +\infty \text{ et } \lim_{n \to +\infty} \left(1 - \frac{2}{n^2}\right) = 1 \text{ donc, par produit, } \lim_{n \to +\infty} n \left(1 - \frac{2}{n^2}\right) = +\infty \\ \text{donc, par quotient, } \lim_{n \to +\infty} \frac{n+1}{n^2 - 2} = 0 \text{ .} \end{cases}$$

De plus,
$$\lim_{n \to +\infty} n = +\infty$$

donc, par somme,
$$\lim_{n \to +\infty} (n + \frac{n+1}{n^2 - 2}) = +\infty$$
.

 j_* On reconnaît le dénominateur qui est la somme indéterminée $\ (+\infty)-(+\infty)$ vue dans le $2.~g_*$.

$$\frac{1}{\sqrt{n+1} - \sqrt{n}} = \frac{\sqrt{n+1} + \sqrt{n}}{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})} = \frac{\sqrt{n+1} + \sqrt{n}}{n+1-n} = \sqrt{n+1} + \sqrt{n}$$

$$\lim_{n \to +\infty} (\sqrt{n+1} + \sqrt{n}) = +\infty$$

$$(a-b)(a+b) \text{ est deverw } a^2 - b^2$$

k. Il ressemble au i. ..

Mais une mauvaise surprise vous attend si vous étudiez $\frac{2n^2-1}{n+1}$: ça tend vers $+\infty$.

Donc
$$n-\frac{2n^2-1}{n+1}$$
 est une somme indéterminée $(+\infty)-(+\infty)$.

Il faut alors tout factoriser dès le début :

$$n - \frac{2n^2 - 1}{n+1} = \frac{n(n+1) - 2n^2 + 1}{n+1} = \frac{-n^2 + n + 1}{n+1} = \frac{n(-n+1+\frac{1}{n})}{n(1+\frac{1}{n})} = \frac{-n+1+\frac{1}{n}}{1+\frac{1}{n}}$$

$$\int \lim_{n \to +\infty} (-n+1+\frac{1}{n}) = -\infty$$

$$-n+1+\frac{1}{n}$$

$$\begin{cases} \lim_{n \to +\infty} \left(-n + 1 + \frac{1}{n} \right) = -\infty \\ \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 1 \end{cases} \quad \text{donc, par quotient, } \lim_{n \to +\infty} \frac{-n + 1 + \frac{1}{n}}{1 + \frac{1}{n}} = -\infty \,.$$

1. Forme indéterminée
$$\frac{(+\infty)}{(+\infty)}$$
, on développe puis on factorise par n^2 : $\lim_{n\to+\infty}\frac{(1-n)^2}{1-n^2}=-1$ comme dans le \mathbf{g} .

m. Forme indéterminée
$$\frac{(+\infty)}{(-\infty)}$$
, on factorise par n^2 et par n : $\lim_{n\to +\infty}\frac{10n-1}{5-n^2}=0$.

$$\mathbf{n.} \quad \begin{cases} \lim_{n \to +\infty} \frac{1}{n} = 0 \\ \lim_{n \to +\infty} (n+1) = +\infty \text{ donc, par inverse, } \lim_{n \to +\infty} \frac{1}{n+1} = 0 \\ \text{donc, par somme, } \lim_{n \to +\infty} (\frac{1}{n} - \frac{1}{n+1}) = 0 \end{cases}.$$

0. Forme indéterminée
$$\frac{(+\infty)}{(+\infty)}$$
:

$$\frac{n}{1+\sqrt{n}} = \frac{\sqrt{n}\sqrt{n}}{\sqrt{n}(\frac{1}{\sqrt{n}}+1)} = \frac{\sqrt{n}}{\frac{1}{\sqrt{n}}+1}$$

$$\begin{cases} \lim_{n \to +\infty} \sqrt{n} = +\infty \\ \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \text{ donc, par somme, } \lim_{n \to +\infty} (\frac{1}{\sqrt{n}}+1) = 1 \end{cases}$$

donc, par quotient, $\lim_{n \to +\infty} \frac{\sqrt{n}}{\frac{1}{\sqrt{n}} + 1} = +\infty$.

ightarrow Factorisation faible par \sqrt{n} avec l'astuce à connaître $n=\sqrt{n} imes\!\sqrt{n}$.

La factorisation forte par n fonctionne aussi

$$\frac{n}{1+\sqrt{n}} = \frac{n}{n\left(\frac{1}{n} + \frac{\sqrt{n}}{n}\right)} = \frac{1}{\frac{1}{n} + \frac{1}{\sqrt{n}}}$$

On obtient $\frac{1}{(0)}$ qui nécessite une étude de signe de $\frac{1}{n} + \frac{1}{\sqrt{n}}$.

Pas très difficile puisque c'est positif, mais c'est plus long

p. Forme indéterminée
$$(+\infty) - (+\infty)$$
:

$$\sqrt{n^2+1} - \sqrt{n^2-1} \ = \frac{\left(\sqrt{n^2+1} - \sqrt{n^2-1}\right)\left(\sqrt{n^2+1} + \sqrt{n^2-1}\right)}{\sqrt{n^2+1} + \sqrt{n^2-1}} \ = \frac{n^2+1-n^2+1}{\sqrt{n^2+1} + \sqrt{n^2-1}} \ = \frac{2}{\sqrt{n^2+1} + \sqrt{n^2-1}}$$

$$\lim_{n \to +\infty} \left(\sqrt{n^2 + 1} + \sqrt{n^2 - 1} \right) = +\infty$$

donc, par quotient, $\lim_{n \to +\infty} \frac{2}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} = 0$.

2 1. a.
$$-1 < 0.9 < 1$$
 donc $\lim_{n \to +\infty} 0.9^n = 0$ \longrightarrow Ottention, ici, n'alleg pas trop vite et montrez bien la position de 0.9 . donc, par produit, $\lim_{n \to +\infty} 150 \times (0.9)^n = 0$.

b.
$$1,2 > 1$$
 donc $\lim_{n \to +\infty} 1,2^n = +\infty$ donc, par produit, $\lim_{n \to +\infty} -0.5 \times 1,2^n = -\infty$. $\rightarrow \text{N'oubliez pas qu'un petit } - \text{ peut faire basculer de } +\infty \text{ à } -\infty$.

c.
$$5 > 1$$
 donc $\lim_{n \to +\infty} 5^n = +\infty$
donc $\lim_{n \to +\infty} -5^n = -\infty$
donc, par somme, $\lim_{n \to +\infty} (1 - 5^n) = -\infty$.

d.
$$-1 < 0.2 < 1$$
 donc $\lim_{n \to +\infty} 0.2^n = 0$
donc, par somme, $\lim_{n \to +\infty} (0.2 + 0.2^n) = 0.2$.

e.
$$\begin{cases} \lim_{n \to +\infty} (2 + \frac{1}{n}) = 2 \\ e > 1 \text{ donc } \lim_{n \to +\infty} e^n = +\infty \text{ donc } \lim_{n \to +\infty} -3 e^n = +\infty \end{cases}$$

On rappelle que e = 2,718....

donc, par somme, $\lim_{n \to +\infty} (2 + \frac{1}{n} - 3 e^n) = +\infty$.

f.
$$e > 1$$
 donc $\lim_{n \to +\infty} e^n = +\infty$
donc, par inverse, $\lim_{n \to +\infty} \frac{1}{e^n} = 0$
donc, par somme, $\lim_{n \to +\infty} (2 - \frac{1}{e^n}) = 2$.

On peut aussi voir une autre raison car $\frac{1}{e^n}=\left(\frac{1}{e}\right)^n$ avec $\frac{1}{e}=0,367...$. $-1<\frac{1}{e}<1 \ donc \ \lim_{n\to +\infty}\left(\frac{1}{e}\right)^n=+\infty$

donc, par somme, $\lim_{n \to +\infty} \left(2 - \left(\frac{1}{e}\right)^n\right) = 2$.

g.
$$-1 < \frac{2}{3} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$ donc, par somme, $\lim_{n \to +\infty} \left(1 + \left(\frac{2}{3}\right)^n\right) = 1$.

h.
$$7 > 1$$
 donc $\lim_{n \to +\infty} 7^n = +\infty$
donc, par produit, $\lim_{n \to +\infty} (-5 \times 7^n) = -\infty$.

i. Forme indéterminée
$$\frac{(+\infty)}{(+\infty)}$$

C'est
$$2^n$$
 qui va jouer le terme de plus haut degré : $\frac{2^n+1}{2^n-1} = \frac{2^n(1+\frac{1}{2^n})}{2^n(1-\frac{1}{2^n})} = \frac{1+\frac{1}{2^n}}{1-\frac{1}{2^n}}$

$$2 > 1$$
 donc $\lim_{n \to +\infty} 2^n = +\infty$

donc, par inverse, $\lim_{n \to +\infty} \frac{1}{2^n} = 0$

donc, par somme,
$$\begin{cases} \lim_{n \to +\infty} \left(1 + \frac{1}{2^n} \right) = 1 \\ \lim_{n \to +\infty} \left(1 - \frac{1}{2^n} \right) = 1 \end{cases}$$

et donc, par quotient,
$$\lim_{n \to +\infty} \frac{1 + \frac{1}{2^n}}{1 - \frac{1}{2^n}} = 1$$
.

Le numérateur est une somme indéterminée $(+\infty)-(+\infty)$. j.

C'est 5" qui va jouer le terme de plus haut degré :
$$\frac{2^n - 5^n}{2^n + 5^n} = \frac{5^n (\frac{2^n}{5^n} - 1)}{5^n (\frac{2^n}{5^n} + 1)} = \frac{\left(\frac{2}{5}\right)^n - 1}{\left(\frac{2}{5}\right)^n + 1}$$

$$-1 < \frac{2}{5} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{2}{5}\right)^n = 0$

donc, par somme,
$$\begin{cases} \lim_{n \to +\infty} \left(\left(\frac{2}{5} \right)^n - 1 \right) = -1 \\ \lim_{n \to +\infty} \left(\left(\frac{2}{5} \right)^n + 1 \right) = 1 \end{cases}$$

et donc, par quotient,
$$\lim_{n \to +\infty} \frac{\left(\frac{2}{5}\right)^n - 1}{\left(\frac{2}{5}\right)^n + 1} = -1$$
.

2. (b_n) géométrique de premier terme 2 et de raison 0,1donc, pour tout $n \in \mathbb{N}$, $b_n = 2 \times 0,1^n$.

$$-1 < 0, 1 < 1$$
 donc $\lim_{n \to +\infty} 0, 1^n = 0$

donc, par produit,
$$\lim_{n \to +\infty} (2 \times 0, 1^n) = 0$$
.

b. (c_n) géométrique de premier terme -2 et de raison 1,2donc, pour tout $n \in \mathbb{N}$, $c_n = -2 \times 1, 2^n$.

$$1,2 > 1$$
 donc $\lim_{n \to \infty} 1,2^n = +\infty$

1,2 > 1 donc
$$\lim_{n \to +\infty} 1, 2^n = +\infty$$

donc, par produit, $\lim_{n \to +\infty} (-2 \times 1, 2^n) = -\infty$.

3. (g_n) est géométrique de premier terme 1 et de raison 2

donc
$$S_n = 1 \times \frac{2^n - 1}{2 - 1} = 2^n - 1$$

Or,
$$2 > 1$$
 donc $\lim_{n \to +\infty} 2^n = +\infty$

donc, par somme,
$$\lim_{n \to +\infty} (2^n - 1) = +\infty$$
.

 (h_n) est géométrique de premier terme 100 et de raison 0,8

donc
$$T_n = 100 \times \frac{1 - 0.8^n}{1 - 0.8} = 100 \times \frac{1 - 0.8^n}{0.2} = 500 (1 - 0.8^n)$$

Or,
$$-1 < 0.8 < 1$$
 donc $\lim_{n \to \infty} 0.8^n = 0$

donc, par somme et par produit,
$$\lim_{n \to +\infty} 500 (1 - 0.8^n) = 500$$
.

 $G2_n = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^{n-1} \quad \text{est la somme des } n \text{ premiers termes de la suite géométrique de raison } \frac{1}{2} \text{ et de premier terme } 1 .$ $\text{N'oublions pas que } 1 \text{ est } \left(\frac{1}{2}\right)^0.$

Donc
$$G2_n = 1 \times \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} = 2 \left(1 - \left(\frac{1}{2}\right)^n\right).$$

Or,
$$-1 < \frac{1}{2} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$

et donc, par somme et produit,
$$\lim_{n \to +\infty} 2 \left(1 - \left(\frac{1}{2}\right)^n\right) = 2$$
.

d.
$$G3_n = 1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^{n-1}} = 1 + \frac{1}{3} + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{3}\right)^{n-1}$$
.

C'est la somme des n premiers termes de la suite géométrique de raison $\frac{1}{3}$ et de premier terme 1.

Donc
$$G3_n = 1 \times \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = \frac{1 - \left(\frac{1}{3}\right)^n}{\frac{2}{3}} = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right).$$

Or,
$$-1 < \frac{1}{3} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$

et donc, par somme et produit, $\lim_{n \to +\infty} \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) = \frac{3}{2}$.

 $Gk_n = 1 + \frac{1}{k} + \frac{1}{k^2} + \dots + \frac{1}{k^{n-1}}$ est la somme des n premiers termes de la suite géométrique de raison $\frac{1}{k}$ et de premier terme 1.

Donc
$$Gk_n = 1 \times \frac{1 - \left(\frac{1}{k}\right)^n}{1 - \frac{1}{k}} = \frac{1 - \left(\frac{1}{k}\right)^n}{\frac{k - 1}{k}} = \frac{k}{k - 1} \left(1 - \left(\frac{1}{k}\right)^n\right).$$

Or,
$$k \ge 2$$
 donc $0 < \frac{1}{k} \le \frac{1}{2}$ donc $-1 < \frac{1}{k} < 1$ et donc $\lim_{n \to +\infty} \left(\frac{1}{k}\right)^n = 0$

donc, par somme et par produit, $\lim_{n \to +\infty} \frac{k}{k-1} \left(1 - \left(\frac{1}{k} \right)^n \right) = \frac{k}{k-1}$.

3 1. En présence d'un
$$(-1)^n$$
, j'ai le réflexe d'encadrer entre -1 et 1 :

Pour tout $n \in \mathbb{N}^*$, on a:

$$-1 \leqslant (-1)^n \leqslant 1$$

donc
$$-\frac{1}{n} \leqslant \frac{(-1)^n}{n} \leqslant \frac{1}{n}$$

$$\begin{cases} \lim_{n \to +\infty} -\frac{1}{n} = 0\\ \lim_{n \to +\infty} \frac{1}{n} = 0 \end{cases}$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

donc, par encadrement : $\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0$. $\to \mathbb{O}$ u lieu de « par encadrement », vous pouvez écrire aussi « d'après le théorème des gendarmes ».

$$n \ge 1$$

donc
$$2n \ge 2$$

donc $\sqrt{2n} \geqslant \sqrt{2}$ car la fonction racine carrée est croissante

b. Pour tout
$$n \ge 1$$
:

$$\sqrt{2n} \geqslant \sqrt{2}$$

$$\sqrt{2n} \geqslant \sqrt{2}$$

$$\operatorname{donc} \ n^2 \sqrt{2n} \geqslant n^2 \sqrt{2}$$

$$\begin{cases} \lim_{n \to +\infty} n^2 \sqrt{2} = +\infty \\ a_n \ge n^2 \sqrt{2} \end{cases}$$

Donc, par minoration:
$$\lim_{n \to +\infty} n^2 \sqrt{2n} = +\infty$$
. $\to n^2 \sqrt{2}$ "peake" a_n vers $+\infty$.

En présence d'un sinus, j'ai le réflexe d'encadrer entre -1 et 1:

Pour tout n de \mathbb{N} , on a:

$$-1 \leqslant \sin n \leqslant 1$$

donc
$$n-1 \leqslant n + \sin n \leqslant n + 1$$

donc
$$\frac{1}{n-1} \ge \frac{1}{n+\sin n} \ge \frac{1}{n+1}$$
 car la fonction inverse est décroissante sur \mathbb{R}^{+*}

$$\begin{cases} \lim_{n \to +\infty} (n-1) = +\infty & \text{donc, par inverse, } \lim_{n \to +\infty} \frac{1}{n-1} = 0\\ \lim_{n \to +\infty} (n+1) = +\infty & \text{donc, par inverse, } \lim_{n \to +\infty} \frac{1}{n+1} = 0 \end{cases}$$
On en déduit par encadrement :
$$\lim_{n \to +\infty} \frac{1}{n} = 0.$$

$$\lim_{n \to +\infty} (n+1) = +\infty$$
 donc, par inverse, $\lim_{n \to +\infty} \frac{1}{n+1} = 0$.

On en déduit par encadrement :
$$\lim_{n \to +\infty} \frac{1}{n + \sin n} = 0$$

4. Un grand classique : pour démontrer que $\ A\geqslant B$, je vais démontrer que $\ A-B$ est positif

Pour tout entier
$$n$$
:

$$v_n - (n-3) = \frac{n^2 - 7}{n+3} - (n-3)$$

$$= \frac{n^2 - 7}{n+3} - \frac{(n-3)(n+3)}{n+3}$$

$$= \frac{n^2 - 7 - n^2 + 9}{n+3}$$

$$= \frac{2}{n+3} \ge 0$$
donc $v_n \ge n-3$.

donc
$$v_n \ge n-3$$
.

b.
$$\begin{cases} \lim_{n \to +\infty} (n-3) = +\infty \\ v_n \ge n-3 \\ \text{donc, par minoration} : \lim_{n \to +\infty} v_n = +\infty \end{cases}$$

5. Pour tout n de \mathbb{N} , on a:

$$\begin{cases} \lim_{n \to +\infty} \frac{n}{3} = +\infty \\ \frac{n}{3} \leqslant w_n \end{cases}$$

donc, par minoration :
$$\lim_{n\to+\infty} w_n = +\infty$$
.

4 1. Pour tout k de $\{1; 2; ...; n\}$, on a:

Il faut bien comprendre ici qu'on a écrit en fait autant d'encadrements qu'il y a de valeurs de k, c'est-à-dire n encadrements, que voici : $\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{1}} \leqslant 1 \quad \text{pour } k=1$

$$\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{1}} \leqslant 1 \text{ powr } k = 1$$

$$\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{2}} \leqslant 1 \text{ powr } k = 2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n-1}} \leqslant 1 \text{ powr } k = n-1$$

$$\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}} \leqslant 1 \text{ powr } k = n$$

Pour obtenir S_n , on va ajouter toutes les racines du centre.

Mais aussi tous les
$$\frac{1}{\sqrt{n}}$$
 de gauche. Il y en a n , donc la somme fera $\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} = n \times \frac{1}{\sqrt{n}}$. Et aussi tous les $\frac{1}{\sqrt{n}}$ de gauche. Il y en a aussi n , donc la somme fera $\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} = n \times \frac{1}{\sqrt{n}}$.

Donc, par somme: $n \times \frac{1}{\sqrt{n}} \leqslant S_n \leqslant n \times 1 \longrightarrow \text{Heureusement qu'or a un peu expliqué, heir } ?$

Or
$$n \times \frac{1}{\sqrt{n}} = \frac{n}{\sqrt{n}} = \frac{\sqrt{n}\sqrt{n}}{\sqrt{n}} = \sqrt{n}$$
.

On en déduit :
$$\sqrt{n} \leq S_n \leq n$$
.

b.
$$\begin{cases} \lim_{n \to +\infty} \sqrt{n} = +\infty \\ \sqrt{n} \leqslant S_n \end{cases}$$

donc, par minoration: $\lim_{n \to +\infty} S_n = +\infty$.

• Pour tout entier $1 \le k \le n$, $\lim (n^2 + k) = +\infty$

donc, par inverse :
$$\lim_{n \to +\infty} \frac{1}{n^2 + k} = 0$$

donc, par inverse : $\lim_{n \to +\infty} \frac{1}{n^2 + k} = 0$. Donc, chacun des termes $\frac{1}{n^2 + 1}$, $\frac{1}{n^2 + 2}$, ..., $\frac{1}{n^2 + n}$ tend vers 0.

• Pour tout entier $1 \le k \le n$, $\frac{n}{n^2 + k} = \frac{n}{n(n + \frac{k}{n})} = \frac{1}{n + \frac{k}{n}}$

$$\begin{cases} \lim_{n \to +\infty} n = +\infty \\ \lim_{n \to +\infty} \frac{k}{n} = 0 \end{cases}$$
 donc, par somme : $\lim_{n \to +\infty} (n + \frac{k}{n}) = +\infty$, donc, par inverse : $\lim_{n \to +\infty} \frac{1}{n + \frac{k}{n}} = 0$.

Donc, chacun des termes $\frac{n}{n^2+1}$, $\frac{n}{n^2+2}$, ..., $\frac{n}{n^2+n}$ tend vers 0.

• Pour tout k de $\{1; 2; ...; n\}$, on a:

$$1 \leqslant k \leqslant n$$

donc
$$n^2 + 1 \le n^2 + k \le n^2 + n$$

donc $\frac{1}{n^2+1} \ge \frac{1}{n^2+k} \ge \frac{1}{n^2+n}$ car la fonction inverse est décroissante sur \mathbb{R}^{+*}

donc
$$\frac{1}{n^2 + n} \le \frac{1}{n^2 + k} \le \frac{1}{n^2 + 1}$$

On a de nouveau n encadrements

Pour obtenir U_n , on va ajouter toutes les valeurs du centre.

Comme dans l'exercice 1, les $\frac{1}{n^2+n}$ de gauche sont tous les mêmes, il y en a n .

Et les $\frac{1}{n^2+1}$ de droite sont également tous les mêmes, il y en a n aussi.

Donc, par somme :
$$n \times \frac{1}{n^2 + n} \leqslant U_n \leqslant n \times \frac{1}{n^2 + 1}$$

et donc
$$\frac{n}{n^2+n} \leqslant U_n \leqslant \frac{n}{n^2+1}$$
.

$$\begin{cases} \frac{n}{n^2 + 1} = \frac{n}{n(n + \frac{1}{n})} = \frac{1}{n + \frac{1}{n}} \\ \frac{n}{n^2 + n} = \frac{n}{n(n + 1)} = \frac{1}{n + 1} \end{cases}$$

$$\begin{cases} \lim_{n \to +\infty} n = +\infty \text{ et } \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ , donc par somme } \lim_{n \to +\infty} \left(n + \frac{1}{n} \right) = +\infty \text{ et par inverse } \lim_{n \to +\infty} \frac{1}{n + \frac{1}{n}} = 0 \end{cases}$$

$$\lim_{n \to +\infty} (n+1) = +\infty \text{ donc par inverse } \lim_{n \to +\infty} \frac{1}{n+1} = 0.$$

On en déduit par encadrement : $\lim U_n = 0$

Pour tout k de $\{1; 2; ...; n\}$, on a:

$$1 \quad \leqslant \quad k \quad \leqslant \quad n$$

$$donc n^2 + 1 \leqslant n^2 + k \leqslant n^2 + n$$

donc $\frac{1}{n^2+1} \ge \frac{1}{n^2+k} \ge \frac{1}{n^2+n}$ car la fonction inverse est décroissante sur \mathbb{R}^{+*}

donc
$$\frac{n}{n^2+1} \ge \frac{n}{n^2+k} \ge \frac{n}{n^2+n}$$

donc
$$\frac{n}{n^2+n} \leqslant \frac{n}{n^2+k} \leqslant \frac{n}{n^2+1}$$

On ajoute ces n encadrements.

Donc, par somme :
$$n \times \frac{n}{n^2 + n} \le V_n \le n \times \frac{n}{n^2 + 1}$$

et donc
$$\frac{n^2}{n^2+n} \leqslant V_n \leqslant \frac{n^2}{n^2+1}$$
.

$$\begin{cases} \frac{n^2}{n^2 + n} = \frac{n^2}{n^2 (1 + \frac{1}{n})} = \frac{1}{1 + \frac{1}{n}} \\ \frac{n^2}{n^2 + 1} = \frac{n^2}{n^2 (1 + \frac{1}{n^2})} = \frac{1}{1 + \frac{1}{n^2}} \end{cases}$$

$$\begin{cases} \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ donc par somme puis par inverse } \lim_{n \to +\infty} \frac{1}{1 + \frac{1}{n}} = 1\\ \lim_{n \to +\infty} \frac{1}{n^2} = 0 \text{ donc par somme puis par inverse } \lim_{n \to +\infty} \frac{1}{1 + \frac{1}{n^2}} = 1 \end{cases}.$$

On en déduit par encadrement : $\lim_{n \to +\infty} V_n = 1$.

On voit sur cet exemple qu'une somme infinie de termes infiniment proches de 0 peut donner deux résultats différents...

On va voir dans l'exercice suivant que cela peut être encore autre chose.

3. a. Pour tout k de $\{1; 2; ...; n\}$, on a:

$$1 \leqslant k \leqslant n$$

donc
$$1 \le \sqrt{k} \le \sqrt{n}$$
 car la fonction racine carrée est croissante sur \mathbb{R} +

donc
$$\sqrt{n} + 1 \leq \sqrt{n} + \sqrt{k} \leq \sqrt{n} + \sqrt{n}$$

donc
$$\frac{1}{\sqrt{n}+1} \geqslant \frac{1}{\sqrt{n}+\sqrt{k}} \geqslant \frac{1}{2\sqrt{n}}$$
 car la fonction inverse est décroissante sur \mathbb{R}^{+*}

donc
$$\frac{1}{2\sqrt{n}} \leqslant \frac{1}{n+\sqrt{k}} \leqslant \frac{1}{\sqrt{n}+1}$$

On ajoute ces n encadrements.

Donc, par somme :
$$n \times \frac{1}{2\sqrt{n}} \le T_n \le n \times \frac{1}{\sqrt{n}+1}$$

et donc
$$\frac{\sqrt{n}}{2} \leqslant T_n \leqslant \frac{n}{\sqrt{n+1}}$$
.

b.
$$\begin{cases} \lim_{n \to +\infty} \frac{\sqrt{n}}{2} = +\infty \\ \frac{\sqrt{n}}{2} \leqslant T_n \end{cases}$$

donc, par minoration : $\lim_{n\to+\infty} T_n = +\infty$.

(5) 1. Le nombre de voitures louées au mois de février 2019 est $u_1 = 0.9u_0 + 42 = 0.9 \times 280 + 42 = 294$

2. a. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - 420$$

$$= 0.9u_n + 42 - 420$$

$$= 0.9u_n - 378$$

$$= 0.9 (u_n - \frac{378}{0.9})$$

$$= 0.9 (u_n - 420)$$

$$= 0.9 v_n$$

Donc (v_n) est géométrique de raison 0,9 et de premier terme $v_0 = u_0 - 420 = -40$.

b. • On déduit du **a.** que, pour tout
$$n \in \mathbb{N}$$
, $v_n = v_0 \times 0.9^n = -40 \times 0.9^n$.

• Pour tout
$$n \in \mathbb{N}$$
:

$$v_n = u_n - 420 \iff u_n = v_n + 420$$

 $\iff u_n = -40 \times 0.9^n + 420$

3.
$$-1 < 0.9 < 1$$
 donc $\lim_{n \to \infty} 0.9^n = 0$

donc par produit puis par somme,
$$\lim_{n \to +\infty} (-40 \times 0.9^n + 420) = 420$$

Cela signifie qu'au bout d'un grand nombre de mois, le nombre de véhicules loués va se rapprocher de 420.

En conséquence, le nombre de véhicules dont dispose le responsable sera alors un jour insuffisant : il doit augmenter son nombre de véhicules.

6 1. a. La masse, représentée par u_n , augmente chaque jour de 20 % dont elle est multipliée par 1,2. Puis, chaque jour, 100 g de bactéries sont perdus. Donc on soustrait 100.

On a bien $u_{n+1} = 1,2 u_n - 100$ pour tout entier n.

```
b.     u = 1000
     n = 0
     while u<=30 :
          u = 1.2u-100
          n = n+1
     print(n)</pre>
```

L'algorithme affiche la valeur 23.

Donc, on dépassera 30 kg de bactéries au bout de 23 jours.

- **2.** Posons $\mathcal{P}(n)$ la comparaison $u_{n+1} > u_n$.
 - <u>Initialisation</u>:

```
\begin{cases} u_0 = 1 \ 000 \\ u_1 = 1,2 \times 1 \ 000 - 100 = 1 \ 100 \end{cases} donc u_1 > u_0, donc \mathscr{P}(0) est vraie.
```

• <u>Itération</u>:

Supposons $\mathcal{S}(n)$: $u_{n+1} > u_n$ pour un certain entier $n \ge 0$ quelconque.

Alors:

 $u_{n+1} > u_n$ par hypothèse de récurrence donc $1,2u_{n+1} > 1,2u_n$

donc $1,2u_{n+1}-100 > 1,2u_n-100$ donc $u_{n+2} > u_{n+1}$

Donc $\mathcal{P}(n+1)$ vraie.

• Conclusion:

Donc, d'après le principe de récurrence, $\mathscr{S}(n)$ est vraie pour tout $n \in \mathbb{N}$.

On en déduit que (u_n) est strictement croissante.

3. a. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - 500$$

$$= 1, 2u_n - 100 - 500$$

$$= 1, 2u_n - 600$$

$$= 1, 2 (u_n - \frac{600}{1, 2})$$

$$= 1, 2 (u_n - 500)$$

$$= 1, 2 v_n$$

Donc (v_n) est géométrique de raison 1,2 et de premier terme $v_0 = u_0 - 500 = 500$.

- **b.** On déduit du **a.** que, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times 1, 2^n = 500 \times 1, 2^n$.
 - Pour tout $n \in \mathbb{N}$:

$$v_n = u_n - 500 \iff u_n = v_n + 500$$

 $\iff u_n = 500 \times 1, 2^n + 500$
 $\iff u_n = 500 (1 + 1, 2^n)$

c. 1,2 > 1 donc $\lim_{n \to +\infty} 1,2^n = +\infty$

donc par somme puis par produit, $\lim_{n \to +\infty} 500 (1 + 1, 2^n) = +\infty$

Cela signifie que la masse de bactérie deviendra aussi grande qu'on veut au bout d'un nombre de jours suffisamment grand.

- Seules les question originales sont corrigées.
 - **1.** Le café va refroidir, donc la suite (T_n) est décroissante.
 - **2.** Pour tout entier naturel n:

$$T_{n+1} - T_n = -0.2 \ (T_n - 10)$$
 donc
$$T_{n+1} = -0.2 \ T_n + 2 + T_n$$
 donc
$$T_{n+1} = 0.8 \ T_n + 2$$

3. **c.** -1 < 0.8 < 1 donc $\lim_{n \to \infty} 0.8^n = 0$

donc par produit puis par somme, $\lim_{n \to +\infty} (70 \times 0.8^n + 10) = 10$

Cela signifie que la température du café va tendre vers 10°C.

(8) **a.** Pour tout
$$n \in \mathbb{N}$$
:

$$v_{n+1} = (n+1) u_{n+1} - 1$$

$$= (n+1) \frac{nu_n + 1}{2(n+1)} - 1 \qquad \rightarrow \text{Simplification très heureuse, encore faut-il la voir...}$$

$$= \frac{1}{2} nu_n + \frac{1}{2} - 1$$

$$= \frac{1}{2} nu_n - \frac{1}{2}$$

$$= \frac{1}{2} (nu_n - 1)$$

$$= \frac{1}{2} v_n$$

Donc (v_n) est géométrique de raison $\frac{1}{2}$ et de premier terme $v_1 = 0 \times u_1 - 1 = \frac{1}{2}$. \longrightarrow Ottention, on commence au rang 1 ...

b. • On déduit du **a.** que, pour tout
$$n \in \mathbb{N}$$
, $v_n = v_1 \times (\frac{1}{2})^{n-1} = \frac{1}{2} \times (\frac{1}{2})^{n-1} = (\frac{1}{2})^n$. \longrightarrow ... et donc la formule explicite est à adapter!

• Pour tout
$$n \in \mathbb{N}$$
:

$$v_n = nu_n - 1 \iff u_n = \frac{v_n + 1}{n}$$

• Et donc
$$u_n = \frac{(\frac{1}{2})^n + 1}{n}$$
 ou encore $u_n = \frac{1 + 0.5^n}{n}$.

c.
$$\begin{cases} -1 < 0.5 < 1 \text{ donc } \lim_{n \to +\infty} 0.5^n = 0 \text{ donc, par somme } \lim_{n \to +\infty} (1 + 0.5^n) = 1\\ \lim_{n \to +\infty} n = +\infty \end{cases}$$

donc, par quotient, $\lim_{n \to +\infty} \frac{1 + 0.5^n}{n} = 0$.

(9) 1. a.
$$u_0 = 0$$

$$u_1 = \frac{1}{2 - u_0} = \frac{1}{2}$$

$$u_2 = \frac{1}{2 - u_1} = \frac{1}{2 - \frac{1}{2}} = \frac{2}{3}$$

$$u_3 = \frac{1}{2 - u_2} = \frac{1}{2 - \frac{2}{3}} = \frac{3}{4}$$

$$u_4 = \frac{1}{2 - u_3} = \frac{1}{2 - \frac{3}{4}} = \frac{4}{5}$$

On peut conjecturer que, pour tout $n \in \mathbb{N}$, $u_n = \frac{n}{n+1}$.

b. Posons
$$\mathcal{S}(n)$$
 l'égalité $u_n = \frac{n}{n+1}$.

$$u_0 = 0 = \frac{0}{0+1}$$
 donc $\mathcal{P}(0)$ est vraie.

Supposons $\mathcal{P}(n)$: $u_n = \frac{n}{n+1}$ pour un certain entier $n \ge 0$ quelconque.

Montrons
$$\mathscr{P}(n+1)$$
: $u_{n+1} = \frac{n+1}{n+1+1} = \frac{n+1}{n+2}$.

Alors

$$u_n = \frac{n}{n+1}$$
 par hypothèse de récurrence

donc
$$2-u_n = 2 - \frac{n}{n+1} = \frac{2(n+1)}{n+1} - \frac{n}{n+1} = \frac{2n+2-n}{n+1} = \frac{n+2}{n+1}$$

$$donc \frac{1}{2-u_n} = \frac{n+1}{n+2}$$

donc
$$u_{n+1} = \frac{n+1}{n+2}$$

• Conclusion

Donc, d'après le principe de récurrence, $\mathscr{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

 $\underline{\mathsf{BROUILLON}}: \text{On repère d'abord le quotient indéterminé } \frac{(+\infty)}{(+\infty)} \text{ et on factorise par } n \text{ .}$

$$u_n = \frac{n}{n+1} = \frac{n}{n(1+\frac{1}{n})} = \frac{1}{1+\frac{1}{n}}$$

$$\lim_{n \to +\infty} (1 + \frac{1}{n}) = 1$$
donc, par somme, $\lim_{n \to +\infty} u_n = 1$.

(10) a. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - (n+1)$$

$$= \frac{2}{3}u_n + \frac{1}{3}n + 1 - n - 1$$

$$= \frac{2}{3}u_n - \frac{2}{3}n$$

$$= \frac{2}{3}(u_n - 1)$$

$$= \frac{2}{3}v_n$$

Donc (v_n) est géométrique de raison $\frac{2}{3}$ et de premier terme $v_0 = u_0 - 0 = 2$.

• On déduit du **a.** que, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times (\frac{2}{3})^n = 2 \times (\frac{2}{3})^n$.

$$v_n = u_n - n \iff u_n = v_n + n$$

• Et donc
$$u_n = 2 \left(\frac{2}{3}\right)^n + n$$
.

c.
$$\begin{cases} -1 < \frac{2}{3} < 1 \text{ donc } \lim_{n \to +\infty} (\frac{2}{3})^n = 0 \text{ et donc } \lim_{n \to +\infty} 2(\frac{2}{3})^n = 0 \\ \lim_{n \to +\infty} n = +\infty \end{cases}$$

donc, par somme, $\lim_{n \to +\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty$.

$$= v_0 + 0 + v_1 + 1 + \dots + v_n + n$$

$$= u_0 + u_1 + \dots + u_n$$

$$= v_0 + 0 + v_1 + 1 + \dots + v_n + n$$

$$= (v_0 + v_1 + \dots + v_n) + (0 + 1 + \dots + n)$$

Te reconnais une somme de termes d'une suite géométrique et la somme des premiers entiers jusqu'à n

$$= 2 \times \frac{1 - (\frac{2}{3})^{n+1}}{1 - \frac{2}{3}} + \frac{n(n+1)}{2} \quad \text{car } (v_n) \text{ géométrique de raison } \frac{2}{3} \text{ et de premier terme } 2 \text{ et le nombre de termes est } n+1$$

$$= 6 \times (1 - (\frac{2}{3})^{n+1}) + \frac{n(n+1)}{2} \quad \rightarrow \text{Pas très sympa mais ce n'est pas grave...}$$

•
$$T_n = \frac{S_n}{n^2}$$

$$=\frac{6\times(1-(\frac{2}{3})^{n+1})}{\frac{n^2}{2}}+\frac{\frac{n(n+1)}{2}}{\frac{n^2}{2}}$$

D'une part, $\begin{cases} -1 < \frac{2}{3} < 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{2}{3}\right)^{n+1} = 0 \text{ donc, par somme et produit, } \lim_{n \to +\infty} 6 \times \left(1 - \left(\frac{2}{3}\right)^{n+1}\right) = 6 \\ \lim_{n \to +\infty} n^2 = +\infty \end{cases}$

donc, par quotient,
$$\lim_{n \to +\infty} \frac{6 \times (1 - (\frac{2}{3})^{n+1})}{n^2} = 0$$

D'autre part :
$$\frac{\frac{n(n+1)}{2}}{n^2} = \frac{n^2 + n}{2n^2} = \frac{n^2}{2n^2} + \frac{n}{2n^2} = \frac{1}{2} + \frac{1}{2n}$$

$$\lim_{n \to +\infty} \frac{1}{2n} = 0 \text{ donc, par somme, } \lim_{n \to +\infty} \left(\frac{1}{2} + \frac{1}{2n}\right) = \frac{1}{2}.$$

On en conclut par somme :
$$\lim_{n \to +\infty} \left(\frac{6 \times (1 - (\frac{2}{3})^{n+1})}{n^2} + \frac{n(n+1)}{\frac{2}{n^2}} \right) = \frac{1}{2}$$

(1) **a.** Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = \frac{u_{n+1}}{1 - u_{n+1}}$$

$$= \frac{3u_n}{1 + 2u_n}$$

$$= \frac{3u_n}{1 + 2u_n}$$

$$= \frac{3u_n}{1 + 2u_n}$$

$$= \frac{1 + 2u_n}{1 + 2u_n} - \frac{3u_n}{1 + 2u_n}$$

$$= \frac{1 + 2u_n}{1 + 2u_n} - \frac{3u_n}{1 + 2u_n}$$

$$= \frac{3u_n}{1 + 2u_n}$$

$$= \frac{1 - u_n}{1 + 2u_n}$$

$$= \frac{3u_n}{1 + 2u_n}$$

$$= \frac{3u_n}{1 - u_n}$$

$$= \frac{3u_n}{1 - u_n}$$

$$= \frac{3u_n}{1 - u_n}$$

$$= 3v_n$$

$$\Rightarrow \dots \text{ car les dénominateurs s'éliminent!}$$

$$= 3 \times \frac{u_n}{1 - u_n}$$

$$= 3 \times \frac{u_n}{1 - u_n}$$

$$= 3v_n$$

Donc (v_n) est géométrique de raison 3 et de premier terme $v_0 = \frac{u_0}{1 - u_0} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$.

- **b.** On déduit du **a.** que, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times 3^n = 3^n$.
- **c.** Pour tout $n \in \mathbb{N}$:

$$\begin{array}{lll} v_n = \frac{u_n}{1-u_n} & \Leftrightarrow v_n \, (\, 1-u_n \,) \, = \, u_n & \longrightarrow \, \mathbb{M} \text{on but est d'isoler} \ u_n \,. \\ & \Leftrightarrow v_n - v_n \, u_n \, = \, u_n & \longrightarrow \, \mathbb{J} \text{e développe.} \\ & \Leftrightarrow u_n + v_n \, u_n \, = \, v_n & \longrightarrow \, \mathbb{J} \text{e regroupe les } \, u_n \, \, \text{à gauche.} \\ & \Leftrightarrow u_n \, (\, 1+v_n \,) \, = \, v_n & \longrightarrow \, \mathbb{J} \text{e factorise.} \\ & \Leftrightarrow u_n \, = \, \frac{v_n}{1+v_n} \, \text{car} \, \, v_n \neq -1 & \longrightarrow \, \mathbb{J} \text{'isole } \, u_n \, \text{avec la division.} \end{array}$$

D'après le c), pour tout $n \in \mathbb{N}$, $u_n = \frac{3^n}{1+3^n}$.

d. Forme indéterminée $\frac{(\infty)}{(\infty)}$, c'est 3^n qui va jouer le terme de plus haut degré : $\frac{3^n}{1+3^n} = \frac{3^n}{3^n(\frac{1}{3^n}+1)} = \frac{1}{\frac{1}{3^n}+1}$.

3 > 1 donc $\lim_{n \to +\infty} 3^n = +\infty$ et donc par inverse $\lim_{n \to +\infty} \frac{1}{3^n} = 0$

donc, par somme puis par inverse, $\lim_{n \to +\infty} \frac{1}{\frac{1}{3^n + 1}} = 1$.

(12) **a.** Pour tout $n \in \mathbb{N}$:

$$\begin{split} v_{n+1} &= \frac{u_{n+1}-1}{u_{n+1}+1} \\ &= \frac{\frac{u_n+2}{2u_n+1}-1}{\frac{u_n+2}{2u_n+1}+1} \\ &= \frac{\frac{u_n+2-2u_n-1}{2u_n+1}}{\frac{2u_n+1}{2u_n+1}} \\ &= \frac{-u_n+1}{2u_n+1} \times \frac{2u_n+1}{3u_n+3} \\ &= \frac{-u_n+1}{3u_n+3} \end{split}$$

b. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = \frac{-u_n + 1}{3u_n + 3}$$

$$= \frac{-(u_n - 1)}{3(u_n + 1)}$$

$$= -\frac{1}{3} \times \frac{u_n - 1}{u_n + 1}$$

$$= -\frac{1}{3} v_n$$

Donc (v_n) est géométrique de raison $-\frac{1}{3}$ et de premier terme $v_0 = \frac{u_0 - 1}{u_0 + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$

On en déduit que, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times (-\frac{1}{3})^n = \frac{1}{3} \times (-\frac{1}{3})^n$. \longrightarrow Ottention, cette expression ne peut pas se simplifier.

Pour tout $n \in \mathbb{N}$:

From total N = N .

$$u_n = \frac{-1 - v_n}{v_n - 1}$$

$$= \frac{-1 - \frac{1}{3} \times (-\frac{1}{3})^n}{\frac{1}{3} \times (-\frac{1}{3})^n - 1}$$

$$= \frac{-3 - (-\frac{1}{3})^n}{\frac{3}{3}}$$

$$= \frac{-3 - (-\frac{1}{3})^n}{(-\frac{1}{3})^n - 3}$$

$$= \frac{-3 - (-\frac{1}{3})^n}{(-\frac{1}{3})^n - 3}$$

$$-1 < -\frac{1}{3} < 1$$
 donc $\lim_{n \to +\infty} (-\frac{1}{3})^n = 0$

et donc par somme
$$\begin{cases} \lim_{n \to +\infty} \left(-3 - \left(-\frac{1}{3} \right)^n \right) = -3\\ \lim_{n \to +\infty} \left(\left(-\frac{1}{3} \right)^n - 3 \right) = -3 \end{cases}$$

donc, par quotient,
$$\lim_{n \to +\infty} \frac{-3 - \left(-\frac{1}{3}\right)^n}{\left(-\frac{1}{3}\right)^n - 3} = 1.$$

(13) a.

$$w_{n+1} = \frac{1}{v_{n+1} - 3}$$

$$= \frac{1}{\frac{9}{6 - v_n} - 3}$$

$$= \frac{1}{\frac{9}{6 - v_n} - \frac{3(6 - v_n)}{6 - v_n}}$$

$$= \frac{1}{\frac{9 - 18 + 3v_n}{6 - v_n}}$$

$$= \frac{6 - v_n}{\frac{9 - 3v_n}{6 - v_n}}$$

On se retrouve avec une expression dans laquelle il est difficile de faire apparaître $w_n \dots$

Mais l'énoncé me dit qu'elle doit être arithmétique de raison $-\frac{1}{3}$.

 $1^{\frac{2ne}{n}}$ méthode: calculer $w_{n+1}-w_n$ pour voir si ça ne fait pas $-\frac{1}{3}$

$$\frac{1^{\frac{\delta v}{n}} \text{ méthode}}{w_{n+1} - w_n} = \frac{6 - v_n}{-9 + 3v_n} - \frac{1}{v_n - 3}$$

$$= \frac{6 - v_n}{3(v_n - 3)} - \frac{1}{v_n - 3} \longrightarrow \text{La réduction au même dénominateur est nettement moins sympa...}$$

$$= \frac{6 - v_n}{3(v_n - 3)} - \frac{3}{3(v_n - 3)}$$

$$= \frac{3 - v_n}{3(v_n - 3)}$$

$$= \frac{3 - v_n}{3(v_n - 3)}$$

$$= \frac{-(v_n - 3)}{3(v_n - 3)} \longrightarrow \text{Ouf...}$$

$$= -\frac{1}{3}$$

 $\underline{2^{\mathtt{ine}}}$ <u>méthode</u> : calculer $w_n-\frac{1}{3}$ pour voir si ça ne fait pas la même chose...

$$w_n - \frac{1}{3} = \frac{1}{v_n - 3} - \frac{1}{3}$$

$$= \frac{3}{3(v_n - 3)} - \frac{v_n - 3}{3(v_n - 3)}$$

$$= \frac{3 - v_n + 3}{3v_n - 9}$$

$$= \frac{6 - v_n}{-9 + 3v_n}$$

$$= w_{n+1}$$

Donc, (w_n) est arithmétique de raison $-\frac{1}{3}$ et de premier terme $w_0 = \frac{1}{v_0 - 3} = -\frac{1}{2}$.

b. • On déduit du **a.** que, pour tout
$$n \in \mathbb{N}$$
, $w_n = w_0 + n \times (-\frac{1}{3})$
$$= -\frac{1}{2} - \frac{n}{3}.$$

• Pour tout $n \in \mathbb{N}$:

$$w_n = \frac{1}{v_n - 3} \Leftrightarrow w_n (v_n - 3) = 1$$

$$\Leftrightarrow w_n v_n - 3w_n = 1$$

$$\Leftrightarrow w_n v_n = 1 + 3w_n$$

$$\Leftrightarrow v_n = \frac{1 + 3w_n}{w_n}$$

• On en déduit :

$$v_n = \frac{1 + 3\left(-\frac{1}{2} - \frac{n}{3}\right)}{-\frac{1}{2} - \frac{n}{3}}$$
$$= \frac{\frac{-6n - 3}{6}}{\frac{-3 - 2n}{6}}$$
$$= \frac{\frac{-6n - 3}{-3 - 2n}}{=\frac{6n + 3}{2n + 3}}$$

c.
$$\frac{6n+3}{2n+3} = \frac{n(6+\frac{3}{n})}{n(2+\frac{3}{n})} = \frac{6+\frac{3}{n}}{2+\frac{3}{n}}$$

$$\lim_{n \to +\infty} \frac{3}{n} = 0 \text{ donc, par somme,} \begin{cases} \lim_{n \to +\infty} \left(6 + \frac{3}{n} \right) = 6\\ \lim_{n \to +\infty} \left(2 + \frac{3}{n} \right) = 2 \end{cases}$$

et par quotient,
$$\lim_{n \to +\infty} \frac{6 + \frac{3}{n}}{2 + \frac{3}{n}} = \frac{6}{2} = 3$$
.

(4) a. La question b. est orientée vers une démonstration par récurrence. Mais pas la question a. C'est une démonstration directe.

$$2n^2 - (n+1)^2 = 2n^2 - n^2 - 2n - 1$$

$$= n^2 - 2n - 1$$

$$\Rightarrow \text{Un polynôme du second degré et un signe positif ? Sowenirs de 1}^{\text{tre}}...$$

C'est un polynôme du second degré, du signe de son coefficient dominant 1 positif à l'extérieur de ses racines.

$$\Delta = (-2)^2 - 4 \times 1 \times (-1) = 8 > 0$$
 donc if y a deux racines $\frac{-(-2) - \sqrt{8}}{2 \times 1} = -0, 4...$ et $\frac{-(-2) + \sqrt{8}}{2 \times 1} = 2, 4...$

On en déduit que $2n^2 - (n+1)^2$ est positif et donc que $2n^2 \ge (n+1)^2$ pour tout entier n supérieur à 2,4... et donc supérieur ou égal à 3.

- **b.** On pose $\mathscr{S}(n): 2^n \ge n^2$, la comparaison à démontrer.
 - <u>Initialisation</u>:

$$\begin{array}{|c|c|c|c|}
\hline
 & 2^4 = 16 \\
 & 4^2 = 16 \\
\hline
 & 4^2 = 16
\end{array}$$

donc $\mathcal{P}(4)$ est vraie.

• <u>Itération</u>:

Supposons $\mathcal{P}(n)$ vraie pour un n quelconque supérieur ou égal à 4.

$$2^n \ge n^2$$
 par hypothèse de récurrence

donc
$$2 \times 2^n \ge 2n^2$$

donc
$$2^{n+1} \ge 2n^2$$

ightarrow Surtout, n'oubliez pas que vous êtes dans une question $\, {f b.} \,$ qui vient après une question $\, {f a.} \ldots$

Or, on a vu dans la question **a.** que $2n^2 \ge (n+1)^2$ pour tout entier n supérieur ou égal à 3 et donc supérieur ou égal à 4. Donc $2^{n+1} \ge (n+1)^2$.

Donc $\mathcal{P}(n+1)$ vraie.

• Conclusion:

Donc, d'après le principe de récurrence, $\mathcal{S}(n)$ est vraie pour tout entier naturel $n \ge 4$.

c. D'après la question **b.**, pour tout entier n supérieur ou égal à 4 :

$$2^n \geqslant n^2$$

 $\Rightarrow \ 0 < \frac{1}{2^n} \leqslant \frac{1}{n^2} \ {
m car \ la \ fonction \ inverse \ est \ décroissante \ sur \ } {
m I\!R} + ^*$

$$\Rightarrow 0 \leqslant 100n \frac{1}{2^n} \leqslant 100n \frac{1}{n^2}$$
 car $100n$ positif

$$\Rightarrow 0 \leqslant 100n \left(\frac{1}{2}\right)^n \geqslant \frac{100}{n}$$

$$\mathbf{d.} \qquad \bullet \qquad \lim_{n \to +\infty} \frac{100}{n} = 0$$

donc, par encadrement de $100n\left(\frac{1}{2}\right)^n$ entre 0 et $\frac{100}{n}$, on a $\lim_{n\to+\infty}100n\left(\frac{1}{2}\right)^n=0$. $\rightarrow 0u$ « d'après le théorème des gendarmes ».

•
$$-1 < \frac{1}{2} < 1$$
 donc $\lim_{n \to +\infty} 110 \left(\frac{1}{2}\right)^n = 0$

• On en déduit par somme :

$$\lim_{n \to +\infty} [100n (\frac{1}{2})^n + 110 (\frac{1}{2})^n + 340] = 340.$$

La suite (a_n) converge vers 340.

15 **a.** Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - \frac{b}{1-a}$$

$$= au_n + b - \frac{b}{1-a}$$

$$= au_n + \frac{b(1-a)}{1-a} - \frac{b}{1-a}$$

$$= au_n + \frac{-ab}{1-a}$$

$$= a(u_n - \frac{b}{1-a})$$

$$= av_n$$

Donc (v_n) est géométrique de raison a.

b. On déduit du **a.** que, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times a^n$.

Or,
$$v_n = u_n - \frac{b}{1-a} \iff u_n = v_n + \frac{b}{1-a}$$

Donc
$$u_n = v_0 \times a^n + \frac{b}{1-a}$$
.

$$a \in]-1$$
; 1 [donc $-1 < a < 1$ et donc $\lim_{n \to +\infty} a^n = 0$

done par produit
$$\lim_{n \to +\infty} v_0 \times a^n = 0$$

donc par somme
$$\lim_{n \to +\infty} (v_0 \times a^n + \frac{b}{1-a}) = \frac{b}{1-a}$$
.