REPRÉSENTATION DES NOMBRES ENTIERS - CORRECTION

Exercice 1

1. $5279=5\times10^3+2\times10^2+7\times10^1+9\times10^0$

9 est le chiffre des unités, 7 celui des dizaines, 2 celui des centaines et 5 celui des milliers.

2. Avec 5,2,7 et 9, on a 4 possibilité pour le chiffre des unités. Une fois le chiffre des unités fixé, il nous reste 3 possibilités pour les dizaines. Une fois les deux chiffres des unité et des dizaines fixés, il nous reste 2 possibilités pour celui des centaines. Et une fois les 3 premiers fixés, nous n'avons plus le choix pour le dernier.

Ainsi, il y a $4\times3\times2\times1=24$ nombres différents possibles qui s'écrivent avec les chiffres 5,2,7 et 9.

Exemple: $2957 = 2 \times 10^3 + 9 \times 10^2 + 5 \times 10^1 + 7 \times 10^0$

Exercice 2

La phrase devrait plus précisément s'écrire « $Il\ y\ a\ (10)_2$ sortes de gens au monde : ceux qui connaissent le binaire et les autres », ce qui revient à écrire « $Il\ y\ a\ (2)_{10}$ sortes de gens au monde : ceux qui connaissent le binaire et les autres »

Exercice 3: la base 2

- 1. a) $(0101)_2 = 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (5)_{10}$
 - b) $(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (6)_{10}$
 - c) $(11101001)_2 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (233)_{10}$
- 2. Plus tard
- 3. a) $(14C)_{16} = 1 \times 16^2 + 4 \times 16^1 + 12 \times 16^0 = 332_{10}$
 - b) $(7 FA)_{16} = 7 \times 16^2 + 15 \times 16^1 + 10 \times 16^0 = (2042)_{10}$
 - c) $(BEEF)_{16} = 11 \times 16^3 + 14 \times 16^2 + 14 \times 16^1 + 15 \times 16^0 = 48879_{10}$

Exercice 4 : écrire en base 2

- 1) $(14)_{10} = 8 + 4 + 2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (1110)_2$: il faudra 4 bits pour coder ce nombre
- 2) $(218)_{10} = 128 + 64 + 16 + 8 + 2 = 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (11011010)_2$: il faudra 8 bits pour coder ce nombre
- 3) $(42)_{10} = 32 + 8 + 2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (101010)_2$: il faudra 6 bits pour coder ce nombre
- 4) $(57)_{10} = 32 + 16 + 8 + 1 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (111001)_2$: il faudra 6 bits pour coder ce nombre

Exercice 5 : écrire en base 16

1) $(14)_{10} = (E)_{16}$ 2) $(218)_{10} = (DA)_{16}$ 3) $(42)_{10} = (2A)_{16}$ 4) $(57)_{10} = (39)_{16}$

Exercice 6: bases 2 et 16

- 1. On se sert du tableau du cours (partie 1.2.3)
 - Question 1): $(1110)_2 = (E)_{16}$
 - Question 2): $(11011010)_2 = (1101\ 1010)_2 = (DA)_{16}$
 - Question 3): $(2A)_{16} = (0010 \ 1010)_2 = (101010)_2$
 - Question 4): $(39)_{16} = (0011\ 1001)_2 = (111001)_2$
 - On trouve les bons nombres.
- 2. 1) $(1001010)_2 = (0100 \ 1010)_2 = (4A)_{16}$
 - 2) $(100010001)_2 = (0001\ 0001\ 0001)_2 = (111)_{16}$
 - 3) $(101001001111110010)_2 = (0001\ 0100\ 1001\ 1111\ 0010)_2 = (149F2)_{16}$
- 3. 1) $(5A92E3)_{16} = (0101\ 1010\ 1001\ 0010\ 1110\ 0011)_2$
 - 2) $(BAD)_{16} = (1011\ 1010\ 1101)_2$
 - 3) $(FACADE)_{16} = (1111\ 1010\ 1100\ 1010\ 1101\ 1110)_2$

Exercice 7 : un peu d'arithmétique...

- 1. a) $(1101)_2 + (111)_2 = (10100)_2$: à coder sur 5 bits
 - b) $(1101)_2 \times (111)_2 = (1011011)_2$: à coder sur 7 bits
 - c) $(1111)_2 + (10)_2 = (10001)_2$: à coder sur 5 bits
- 2. a) Plus tard
 - b) Plus tard

Exercice 8 : un peu de programmation...

- 1. a) Plus tard
 - b) En base 16, un « 11 » sera écrit « 11 » et non « B ». Donc le programme ne fonctionne que pour les bases inférieures à 10.
- 2. Plus tard